Перевод: с английского на все языки

со всех языков на английский

year of construction

  • 1 year of construction

    year of construction TECH Baujahr n

    English-german engineering dictionary > year of construction

  • 2 year of construction

    year of construction VR Baujahr n; Jahr n der Errichtung

    English-German dictionary of Architecture and Construction > year of construction

  • 3 year round construction

    Глоссарий компании Сахалин Энерджи: круглогодичное строительство

    Универсальный англо-русский словарь > year round construction

  • 4 year of construction

    n.
    Baujahr -e n.

    English-german dictionary > year of construction

  • 5 year round construction

    Англо-русский словарь нефтегазовой промышленности > year round construction

  • 6 year-round construction season

    year-round construction season
    n

    Англо-русский строительный словарь. — М.: Русский Язык. . 1995.

    Англо-русский словарь строительных терминов > year-round construction season

  • 7 year of construction of vessel

    Универсальный англо-русский словарь > year of construction of vessel

  • 8 year-round construction season

    Универсальный англо-русский словарь > year-round construction season

  • 9 year of construction of vessel

    English-Russian marine dictionary > year of construction of vessel

  • 10 year-round construction season

    Англо-русский строительный словарь > year-round construction season

  • 11 construction in process

    (a) work in progress (сокр. WIP)
    1. выполняемая работа
    2. незавершённое производство (один из элементов оборотных средств, стоимость всей не законченной к определенной дате продукции)
    3. незавершённое произведение (писателя, художника)

    “We delivered very encouraging results in the fourth quarter and for full year 2009 despite severe economic headwinds, although our transformation remains a work in progress,” said Lewis Booth, Ford executive vice president and chief financial officer.

    Англо-русский универсальный дополнительный практический переводческий словарь И. Мостицкого > construction in process

  • 12 construction year

    English-Croatian dictionary > construction year

  • 13 season

    season
    n
    сезон; время года; период

    - concrete construction season
    - heating season
    - year-round construction season

    Англо-русский строительный словарь. — М.: Русский Язык. . 1995.

    Англо-русский словарь строительных терминов > season

  • 14 season

    2) выдерживать, сушить ( лесоматериал на воздухе)
    - heating season
    * * *
    сезон; время года; период
    - concrete construction season
    - heating season
    - year-round construction season

    Англо-русский строительный словарь > season

  • 15 stoned out of one's mind

    Общая лексика: обкурен ("I've lived in this building for 16 years," said the 55-year-old construction worker. "One day we saw people walking around the neighbourhood with weapons, stoned out of their minds.")

    Универсальный англо-русский словарь > stoned out of one's mind

  • 16 White, Sir William Henry

    SUBJECT AREA: Ports and shipping
    [br]
    b. 2 February 1845 Devonport, England
    d. 27 February 1913 London, England
    [br]
    English naval architect distinguished as the foremost nineteenth-century Director of Naval Construction, and latterly as a consultant and author.
    [br]
    Following early education at Devonport, White passed the Royal Dockyard entry examination in 1859 to commence a seven-year shipwright apprenticeship. However, he was destined for greater achievements and in 1863 passed the Admiralty Scholarship examinations, which enabled him to study at the Royal School of Naval Architecture at South Kensington, London. He graduated in 1867 with high honours and was posted to the Admiralty Constructive Department. Promotion came swiftly, with appointment to Assistant Constructor in 1875 and Chief Constructor in 1881.
    In 1883 he left the Admiralty and joined the Tyneside shipyard of Sir W.G. Armstrong, Mitchell \& Co. at a salary of about treble that of a Chief Constructor, with, in addition, a production bonus based on tonnage produced! At the Elswick Shipyard he became responsible for the organization and direction of shipbuilding activities, and during his relatively short period there enhanced the name of the shipyard in the warship export market. It is assumed that White did not settle easily in the North East of England, and in 1885, following negotiations with the Admiralty, he was released from his five-year exclusive contract and returned to public service as Director of Naval Construction and Assistant Controller of the Royal Navy. (As part of the settlement the Admiralty released Philip Watts to replace White, and in later years Watts was also to move from that same shipyard and become White's successor as Director of Naval Construction.) For seventeen momentous years White had technical control of ship production for the Royal Navy. The rapid building of warships commenced after the passing of the Naval Defence Act of 1889, which authorized directly and indirectly the construction of around seventy vessels. The total number of ships built during the White era amounted to 43 battleships, 128 cruisers of varying size and type, and 74 smaller vessels. While White did not have the stimulation of building a revolutionary capital ship as did his successor, he did have the satisfaction of ensuring that the Royal Navy was equipped with a fleet of all-round capability, and he saw the size, displacement and speed of the ships increase dramatically.
    In 1902 he resigned from the Navy because of ill health and assumed several less onerous tasks. During the construction of the Cunard Liner Mauretania on the Tyne, he held directorships with the shipbuilders Swan, Hunter and Wigham Richardson, and also the Parsons Marine Turbine Company. He acted as a consultant to many organizations and had an office in Westminster. It was there that he died in February 1913.
    White left a great literary legacy in the form of his esteemed Manual of Naval Architecture, first published in 1877 and reprinted several times since in English, German and other languages. This volume is important not only as a text dealing with first principles but also as an illustration of the problems facing warship designers of the late nineteenth century.
    [br]
    Principal Honours and Distinctions
    KCB 1895. Knight Commander of the Order of the Danneborg (Denmark). FRS. FRSE. President, Institution of Civil Engineers; Mechanical Engineers; Marine Engineers. Vice- President, Institution of Naval Architects.
    Bibliography
    Further Reading
    D.K.Brown, 1983, A Century of Naval Construction, London.
    FMW

    Biographical history of technology > White, Sir William Henry

  • 17 modular data center

    1. модульный центр обработки данных (ЦОД)

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > modular data center

  • 18 Greathead, James Henry

    [br]
    b. 6 August 1844 Grahamstown, Cape Colony (now South Africa)
    d. 21 October 1896 Streatham, London, England
    [br]
    British civil engineer, inventor of the Greathead tunnelling shield.
    [br]
    Greathead came to England in 1859 to complete his education. In 1864 he began a three-year pupillage with the civil engineer Peter W. Barlow, after which he was engaged as an assistant engineer on the extension of the Midland Railway from Bedford to London. In 1869 he was entrusted with the construction of the Tower Subway under the River Thames; this was carried out using a cylindrical wrought-iron shield which was forced forward by six large screws as material was excavated in front of it. This work was completed the same year. In 1870 he set himself up as a consulting engineer, and from 1873 he was Resident Engineer on the Hammersmith and Richmond extensions of the Metropolitan District Railway. He assisted in the preparation of several other railway projects including the Regent's Canal Railway in 1880, the Dagenham Dock and the Metropolitan Outer Circle Railways in 1881, a new line from London to Eastbourne and a number of Irish light railways. He worked on a bill for the City and South London Railway, which was built between 1886 and 1890; here compressed air was used to prevent the inrush of water, a method for tunnelling which was generally adopted from then on. He invented apparatus for the application of water to excavate in front of the shield as well as for injecting cement-grout behind the lining of the tunnel.
    He was joint engineer with Sir Douglas Fox for the construction of the Liverpool Overhead Railway, and held the same post with W.R.Galbraith on the Waterloo and City Railway; he was also associated with Sir John Fowler and Sir Benjamin Baker in the construction of the Central London Railway. He died, aged 52, before the completion of some of these projects.
    [br]
    Further Reading
    Obituary, 1896, Proceedings of the Institution of Mechanical Engineers.
    O.Green, 1987, The London Underground: An Illustrated History', London: Ian Allan (in association with the London Transport Museum).
    P.P.Holman, 1990, The Amazing Electric Tube: A History of the City and South London
    Railway, London: London Transport Museum.
    IMcN

    Biographical history of technology > Greathead, James Henry

  • 19 Rennie, John

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 7 June 1761 Phantassie, East Linton, East Lothian, Scotland
    d. 4 October 1821 Stamford Street, London, England
    [br]
    Scottish civil engineer.
    [br]
    Born into a prosperous farming family, he early demonstrated his natural mechanical and structural aptitude. As a boy he spent a great deal of time, often as a truant, near his home in the workshop of Andrew Meikle. Meikle was a millwright and the inventor of a threshing machine. After local education and an apprenticeship with Meikle, Rennie went to Edinburgh University until he was 22. He then travelled south and met James Watt, who in 1784 offered him the post of Engineer at the Albion Flour Mills, London, which was then under construction. Rennie designed all the mill machinery, and it was while there that he began to develop an interest in canals, opening his own business in 1791 in Blackfriars. He carried out work on the Kennet and Avon Canal and in 1794 became Engineer for the company. He meanwhile carried out other surveys, including a proposed extension of the River Stort Navigation to the Little Ouse and a Basingstoke-to-Salisbury canal, neither of which were built. From 1791 he was also engaged on the Rochdale Canal and the Lancaster Canal, as well as the great masonry aqueduct carrying the latter canal across the river Lune at Lancaster. He also surveyed the Ipswich and Stowmarket and the Chelmer and Blackwater Navigations. He advised on the Horncastle Canal in 1799 and on the River Ancholme in 1799, both of which are in Lincolnshire. In 1802 he was engaged on the Royal Canal in Ireland, and in the same year he was commissioned by the Government to prepare a plan for flooding the Lea Valley as a defence on the eastern approach to London in case Napoleon invaded England across the Essex marshes. In 1809 he surveyed improvements on the Thames, and in the following year he was involved in a proposed canal from Taunton to Bristol. Some of his schemes, particularly in the Fens and Lincolnshire, were a combination of improvements for both drainage and navigation. Apart from his canal work he engaged extensively in the construction and development of docks and harbours including the East and West India Docks in London, Holyhead, Hull, Ramsgate and the dockyards at Chatham and Sheerness. In 1806 he proposed the great breakwater at Plymouth, where work commenced on 22 June 1811.
    He was also highly regarded for his bridge construction. These included Kelso and Musselburgh, as well as his famous Thames bridges: London Bridge (uncompleted at the time of his death), Waterloo Bridge (1810–17) and Southwark Bridge (1815–19). He was elected a Fellow of the Royal Society in 1798.
    [br]
    Principal Honours and Distinctions
    FRS 1798.
    Further Reading
    C.T.G.Boucher, 1963, John Rennie 1761–1821, Manchester University Press. W.Reyburn, 1972, Bridge Across the Atlantic, London: Harrap.
    JHB

    Biographical history of technology > Rennie, John

  • 20 Short, Hugh Oswald

    SUBJECT AREA: Aerospace
    [br]
    b. 16 January 1883 Derbyshire, England
    d. 4 December 1969 Haslemere, England
    [br]
    English co-founder, with his brothers Horace Short (1872–1917) and Eustace (1875–1932), of the first company to design and build aeroplanes in Britain.
    [br]
    Oswald Short trained as an engineer; he was largely self-taught but was assisted by his brothers Eustace and Horace. In 1898 Eustace and the young Oswald set up a balloon business, building their first balloon in 1901. Two years later they sold observation balloons to the Government of India, and further orders followed. Meanwhile, in 1906 Horace designed a high-altitude balloon with a spherical pressurized gondola, an idea later used by Auguste Piccard, in 1931. Horace, a strange genius with a dominating character, joined his younger brothers in 1908 to found Short Brothers. Their first design, based on the Wright Flyer, was a limited success, but No. 2 won a Daily Mail prize of £1,000. In the same year, 1909, the Wright brothers chose Shorts to build six of their new Model A biplanes. Still using the basic Wright layout, Horace designed the world's first twin-engined aeroplane to fly successfully: it had one engine forward of the pilot, and one aft. During the years before the First World War the Shorts turned to tractor biplanes and specialized in floatplanes for the Admiralty.
    Oswald established a seaplane factory at Rochester, Kent, during 1913–14, and an airship works at Cardington, Bedfordshire, in 1916. Short Brothers went on to build the rigid airship R 32, which was completed in 1919. Unfortunately, Horace died in 1917, which threw a greater responsibility onto Oswald, who became the main innovator. He introduced the use of aluminium alloys combined with a smooth "stressed-skin" construction (unlike Junkers, who used corrugated skins). His sleek biplane the Silver Streak flew in 1920, well ahead of its time, but official support was not forthcoming. Oswald Short struggled on, trying to introduce his all-metal construction, especially for flying boats. He eventually succeeded with the biplane Singapore, of 1926, which had an all-metal hull. The prototype was used by Sir Alan Cobham for his flight round Africa. Several successful all-metal flying boats followed, including the Empire flying boats (1936) and the ubiquitous Sunderland (1937). The Stirling bomber (1939) was derived from the Sunderland. The company was nationalized in 1942 and Oswald Short retired the following year.
    [br]
    Principal Honours and Distinctions
    Honorary Fellow of the Royal Aeronautical Society. Freeman of the City of London. Oswald Short turned down an MBE in 1919 as he felt it did not reflect the achievements of the Short Brothers.
    Bibliography
    1966, "Aircraft with stressed skin metal construction", Journal of the Royal Aeronautical Society (November) (an account of the problems with patents and officialdom).
    Further Reading
    C.H.Barnes, 1967, Shorts Aircraft since 1900, London; reprinted 1989 (a detailed account of the work of the Short brothers).
    JDS

    Biographical history of technology > Short, Hugh Oswald

См. также в других словарях:

  • construction — con‧struc‧tion [kənˈstrʌkʆn] noun 1. [uncountable] PROPERTY the activity of building houses, apartments, offices, factories, roads etc: • Share prices of construction, building materials and property investment companies were particularly hard… …   Financial and business terms

  • Construction of the Trans-Alaska Pipeline System — The construction of the Trans Alaska Pipeline System was a massive undertaking involving tens of thousands of people often in extreme temperatures and conditions. Specialized construction techniques were pioneered to build the pipeline, most of… …   Wikipedia

  • Construction site safety — A site safety sign at a highway overpass construction site describing the mandatory safety procedures and equipment. Construction is the most dangerous land based work sector in Europe, after the fishing industry. In the European Union, the fatal …   Wikipedia

  • Construction (Cage) — Construction is the title of several pieces by American composer John Cage, all scored for unorthodox percussion instruments. The pieces were composed in 1939–42 while Cage was working at the Cornish School of the Arts in Seattle, Washington and… …   Wikipedia

  • Construction Products Association — Abbreviation CPA Formation 2000 Type Trade association Legal status Non profit company Purpose/focus Construction products industry in the UK …   Wikipedia

  • Construction Law Journal — Type Ten Times Per Year Format Journal Owner LexisNexis Editor Nicholas Barrett …   Wikipedia

  • Construction Equipment — Type business magazine Format Paper and online magazine Owner MB Media Founded 1949 …   Wikipedia

  • Year Zero — Album par Nine Inch Nails Sortie 16 avril 2007 (Royaume Uni, Europe) 17 avril 2007 (USA) Enregistrement Septembre 13 décembre  …   Wikipédia en Français

  • Year Zero (album) — Year Zero Year Zero Album par Nine Inch Nails Sortie 16 avril 2007 (Royaume Uni, Europe) 17 avril 2007 (USA) Enregistrement Septembre 13 décembre  …   Wikipédia en Français

  • Year zero (album) — Year Zero Year Zero Album par Nine Inch Nails Sortie 16 avril 2007 (Royaume Uni, Europe) 17 avril 2007 (USA) Enregistrement Septembre 13 décembre  …   Wikipédia en Français

  • Construction Du Nombre Chez L'enfant — La construction du nombre chez l enfant est une voie de recherche de la psychologie du développement. Les premières recherches scientifiques à ce sujet, ont été réalisées par Jean Piaget. Sommaire 1 Historique 1.1 La théorie de Piaget 2 …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»